Responses of reticulospinal neurons in intact lamprey to pitch tilt.
نویسندگان
چکیده
In the swimming lamprey, a postural control system maintains a definite orientation of the animal's longitudinal axis in relation to the horizon (pitch angle). Operation of this system is based on vestibular reflexes. Important elements of the postural network are the reticulospinal (RS) neurons, which are driven by vestibular input and transmit commands for postural corrections from the brain stem to the spinal cord. Here we describe responses to vestibular stimulation (rotation of the animal in the pitch plane) in RS neurons of intact lampreys. The activity of neurons was recorded from their axons in the spinal cord by chronically implanted arrays of macroelectrodes. From the multielectrode recordings of mass activity, discharges in individual axons were extracted by means of a spike-sorting program, and the axon position in the spinal cord and its conduction velocity were determined. Vestibular stimulation was performed by rotating the animal in steps of 45 degrees throughout 360 degrees or by periodical "trapezoid" tilts between the nose-up and -down positions. Typically, the RS neurons exhibited both dynamic responses (activity during movement) and static responses (activity in a new sustained position). The neurons were classified into two groups according to their pattern of response. Group UP neurons responded preferentially to nose-up rotation with maximal activity at 0-135 degrees up. Group DOWN neurons responded preferentially to nose-down rotation with maximal activity at 0-135 degrees down. Neurons of the two groups also differed in the position of their axons in the spinal cord and axonal conduction velocity. An increase in water temperature, which presumably causes a downward turn in swimming lampreys, affected the activity in the UP and DOWN groups differently, so that the ratio UP responses to DOWN responses increased. We suggest that the UP and DOWN groups mediate the opposing vestibular reflexes and cause the downward and upward turns of the animal, respectively. The lamprey will stabilize the orientation in the pitch plane at which the effects of UP and DOWN groups are equal to each other. In addition to the main test (rotation in the pitch plane), the animals were also tested by rotation in the transverse (roll) plane. It was found that 22% of RS neurons responding to pitch tilts also responded to roll tilts. The overlap between the pitch and roll populations suggests that the RS pathways are partly shared by the pitch and roll control systems.
منابع مشابه
Asymmetry in the pitch control system of the lamprey caused by a unilateral labyrinthectomy.
A postural control system in the lamprey is driven by vestibular input and maintains a definite orientation of the animal during swimming. After a unilateral labyrinthectomy (UL), the lamprey continuously rolls toward the damaged side. Important elements of the postural network are the reticulospinal (RS) neurons that are driven by vestibular input and transmit commands for postural corrections...
متن کاملPostural control in the lamprey: A study with a neuro-mechanical model.
The swimming lamprey normally maintains the dorsal-side-up orientation due to activity of the postural control system driven by vestibular organs. Commands for postural corrections are transmitted from the brain stem to the spinal cord mainly by the reticulospinal (RS) pathways. As shown in previous studies, RS neurons are activated by contralateral roll tilt, they exhibit a strong dynamic resp...
متن کاملActivity of reticulospinal neurons during locomotion in the freely behaving lamprey.
The reticulospinal (RS) system is the main descending system transmitting commands from the brain to the spinal cord in the lamprey. It is responsible for initiation of locomotion, steering, and equilibrium control. In the present study, we characterize the commands that are sent by the brain to the spinal cord in intact animals via the reticulospinal pathways during locomotion. We have develop...
متن کاملResponses of reticulospinal neurons in intact lamprey to vestibular and visual inputs.
A lamprey maintains the dorsal-side-up orientation due to the activity of postural control system driven by vestibular input. Visual input can affect the body orientation: illumination of one eye evokes ipsilateral roll tilt. An important element of the postural network is the reticulospinal (RS) neurons transmitting commands from the brain stem to the spinal cord. Here we describe responses to...
متن کاملResponses of reticulospinal neurons in the lamprey to lateral turns.
When swimming, the lamprey maintains a definite orientation of its body in the vertical planes, in relation to the gravity vector, as the result of postural vestibular reflexes. Do the vestibular-driven mechanisms also play a role in the control of the direction of swimming in the horizontal (yaw) plane, in which the gravity cannot be used as a reference direction? In the present study, we addr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 3 شماره
صفحات -
تاریخ انتشار 2002